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SUMMARY

In this paper, an unstructured hybrid grid method is discussed for its capability to compute three-dimen-
sional compressible viscous flows of complex geometry. A hybrid of prismatic and tetrahedral grids is
used to accurately resolve the wall boundary layers for high-Reynolds number viscous flows. The
Navier–Stokes equations for compressible flows are solved by a finite volume, cell–vertex scheme. The
LU-SGS implicit time integration method is used to reduce the computational time for very fine grids in
boundary layer regions. Two kinds of one-equation turbulence models are evaluated here for their
accuracy. The method is applied to computations of transonic flows around the ONERA M5 airplane
and ONERA M6 wing, and supersonic shock/boundary layer interacting flows inside a scramjet inlet to
validate the accuracy and efficiency of the method. Copyright © 1999 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Computational fluid dynamics (CFD) has become an indispensable tool for the aerodynamic
design and analysis of airplanes and engines. However, engineering applications of the
conventional CFD based on structured and block structured grids have been limited to
relatively simple components because of the difficulty and cost in generating grids about
three-dimensional complex geometries. Recently, tetrahedral unstructured grids are becoming
more popular for complex geometry problems because of their several advantages over the
conventional structured grids. The tetrahedral grid is flexible enough to treat complex
geometries and has an adaptive refinement/unrefinement capability, thus saving the total
number of grid points. Owing to the recent developments of automatic surface and volume
grid generations, tetrahedral unstructured grids are widely used to solve inviscid flow and low
Reynolds number viscous flow problems.

However, the application of the tetrahedral unstructured grid method to high-Reynolds
number viscous flows has several critical issues. An accurate resolution of thin boundary layers
developed along the wall surface requires very fine grids, which causes a stiffness problem of
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the flow solver. Moreover, the generation of such anisotropic stretched grids without obtuse
grid elements near the wall is another critical issue of the unstructured grid methods. One
promising approach is to use a hybrid grid [1,2], which is comprised of structured or
semi-structured grids for viscous regions and tetrahedral unstructured grids for the rest of
computational domain. Although the concept of the hybrid grid is not very new and several
hybrid methods appear in the literature, their verification in accuracy, efficiency and capability
to treat real engineering problems seems to be relatively unexplored. The paper is aimed at
contributing to the verification issue.

In this paper, applications of the unstructured hybrid grid method to compute compressible
viscous flows about complex geometries are discussed. The computational region is discretized
by a hybrid grid for accurate and efficient computations, as well as the easiness of the grid
generation for complex configurations. The hybrid grid for three-dimensional problems
consists of prismatic and tetrahedral grids. The prismatic semi-structured grid is generated
around viscous boundary surfaces and covers viscous regions, while the tetrahedral grid covers
the rest of computational domain. The solution algorithm to compute compressible Navier–
Stokes equations is based on an upwind, finite volume method. The stiffness problem due to
very fine grids for high-Reynolds number flows is overcome by the LU-SGS implicit time
integration method [3].

The present approach has been applied to several external and internal flow problems for
the validation of the method. For transonic flow problems, the method is applied to flows
around the ONERA M5 airplane and the ONERA M6 wing. These are well-known test cases
for validating the accuracy and efficiency of the code. The method is also applied to supersonic
shock/boundary layer interacting flow fields, where the accuracy of the viscous term computa-
tion including turbulence models becomes important. First, the accuracy and efficiency of the
method are discussed for a supersonic flow of double fins on a flat plate as a test case for
turbulence models. Then the unstructured hybrid grid is applied to a realistic problem of a
scramjet engine in order to validate its capability for three-dimensional high-Reynolds number
flow problems.

2. SOLUTION ALGORITHM

2.1. Finite 6olume discretization

The Navier–Stokes equations for compressible viscous flows are written in an integral form
as follows:

(

(t
&

V
Q dV+

&
(V

(F(Q)−G(Q)) ·n ds=0, (1)

where Q= [r, ru, r6, rw, e ]T is the vector of conservative variables; r is the density; u, 6, w are
the velocity components in the x-, y-, z-directions; and e is the total energy. The vectors
F(Q)and G(Q) represent the inviscid and viscous flux vectors respectively and n is the outward
normal of (V, which is the boundary of the control volume V. This system of equations is
closed by the perfect gas equation of state.

The equations are solved by a finite volume cell–vertex scheme. The control volume is a
non-overlapping dual cell whose boundary is shown in Figure 1. The boundary surface is
defined by the tetrahedra centroid C, face centroids B and D, and mid-point of edge A. A
similar approach is used to construct dual cells for prisms and pyramids using their centroids,
centroids of their faces and mid-points of the edges.
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With this control volume, Equation (1) can be written in an algebraic form as follows:

(Qi
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DSijG(Qij, nij)
n
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where DSij is a segment area of the control volume boundary associated with edge connecting
points i and j. This segment area DSij, as well as its unit normal nij, can be computed by
summing up the contribution from each tetrahedron sharing the edge. The term h is an inviscid
numerical flux vector normal to the control volume boundary, and Qij

9 are values on both
sides of the control volume boundary. The subscript of summation, j(i ), means all node points
connected to node i.

2.2. Con6ecti6e flux computation

The numerical flux h is computed using an approximate Riemann solver of Harten–Lax–
van Leer–Einfeldt–Wada [4]. If we evaluate Qij

9 in h at both end points of each edge, we get
the first-order scheme. The second-order spatial accuracy is realized by a linear reconstruction
of the primitive gas dynamic variables q= [r, u, 6, w, p ]T inside the control volume using the
following equation:

q(r)=qi+ci9qi · (r−ri) (05c51), (3)

where r is a vector pointing to point (x, y, z), and i is the node number. The gradients
associated with the control volume centroids are volume-averaged gradients computed by the
surrounding grid cells

9qi=
%
e(i)

9qeVe

%
e(i)

Ve

, (4)

where index e denotes the identity of the grid cell (tetrahedron, prism or pyramid) sharing node
i. Unlike tetrahedra, the gradients for prismatic and pyramidal cells are not unique, hence
prisms and pyramids are divided into tetrahedra to compute the gradients.

Venkatakrishnan’s limiter [5] is used because of its superior convergence properties,

Figure 1. Control volume.
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where

D− =qij−qi=9qi · (rij−ri),

Dmax=max
j(i)

(qj−qi), Dmin=min
j(i)

(qj−qi), (6)

o2= (KDl)2,

where Dl is an average cell length and K is a constant whose value is selected between 0.1 and
0.3.

2.3. Viscous flux computation

To compute viscous stress and heat flux terms in G(Q), it is necessary to evaluate spatial
derivatives of the primitive variables u, 6, w at each control volume face. In this paper, the
spatial derivatives are evaluated directly at the edges. The gradient of a scalar f is computed
for each edge as follows:

9fE=
%

e(E)

9feVe

%
e(E)

Ve

, (7)

where the index E denotes edge; the summation is performed over all elements (tetrahedra,
prisms or pyramids) sharing the edge E.

The turbulent kinetic viscosity is evaluated by two one-equation turbulence models, the
Goldberg–Ramakrishnan model (G-R) [6] and the Spalart–Allmaras model (S-A) [7]. These
turbulence models do not need a searching procedure along normal lines-to-wall as required in
the Baldwin–Lomax algebraic model, so that they are suitable for unstructured grid methods
to treat complex geometries.

In the G-R model, turbulent kinetic viscosity nt is given by

nt=Cmfm · (nRT). (8)

The transport variable nRT is computed by the following equation:

D(nRT)
Dt

= (Co2f2−Co1)(nRTP)1/2+
�

n+
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�
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9(nRT)
so

. (9)

For the S-A model, turbulent kinetic viscosity nt is given as

nt= 6̃fn1, fn1=
x3

x3+c n1
3 , x=

ñ

n
. (10)

The transport variable ñ in the above equation is given by solving the following equation:

Dñ
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where d is the shortest distance of the field point to the wall. The transition terms in the
original S-A model was neglected here because of simplicity. The initial value of the transport
variable of 20.0/Cm is used in the G-R model, and 0.1/Cm in the S-A model. The turbulence
equation, Equations (9) or (11), is integrated at each gas dynamic step by the same LU-SGS
method.

2.4. LU-SGS method

Implicit time integration is required for computing high-Reynolds number flows because of
severe CFL conditions due to very fine grids near the wall boundary. Here, the LU-SGS
implicit method [3] is applied to integrate Equation (2) in time. With DQ=Qn+1−Qn, an
implicit time integration of Equation (2) can be written as

Vi

Dt
DQi= −%

j(i)

DSijhij
n+1+%

j(i)

DSijGij
n. (12)

By linealizing and splitting the numerical flux vector as hij
n+1=hij

n +Ai
+DQi+Aj

−DQj, a
procedure similar to the conventional derivation of the LU-SGS on structured grids [8] leads
to the following equations:�Vi
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where
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The LU-SGS method on an unstructured grid can be derived by splitting node points j(i )
into two groups, j�L(i ) and j�U(i ), for the second summation in left-hand-side of Equation
(13).�Vj

Dt
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+�DQi+ %

j�L(i)

DSijAj
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This can be solved by the following two sweeps:

Forward sweep: DQ*i =D−1�Ri− %
j�L(i)

DSijAj
−DQ*j

n
(16a)

Backward sweep: DQi=DQ*i −D−1 %
j�U(i)

DSijAj
−DQj, (16b)

where

D=
�Vj

Dt
I+%

j(i)

DSijA*i
�

. (17)

The term D is diagonalized by using the Jameson–Turkel approximation of the Jacobian [9]
as A9=0.5(A9rAI), where rA is a spectral radius of Jacobian A. For viscous flows, rA is
replaced by

r*A=rA+2
m+mT

Re ·r ·h
, (18)

where m and mT are kinetic and turbulent viscosities, and h is the distance between i and j.
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Using the fact [10] that �j(i) DSijA=0, Equation (17) becomes a diagonal matrix

D=
�Vj

Dt
+0.5 %

j(i)

DSijrA

�
I. (19)

With these simplifications, the final form of the LU-SGS method for the unstructured grid
becomes

Forward sweep: DQ*i =D−1�Ri−0.5 %
j�L(i)

DSij(Dh*j −rADQ*j )
n

(20a)

Backward sweep: DQi=DQ*i −0.5D−1 %
j�U(i)

DSij(Dhj−rADQj), (20b)

where Dh=h(Q+DQ)−h(Q).
The lower/upper splitting of Equation (15) for the structured grid is realized by using the

hyper planes i+ j+k=constant. For the unstructured grid, there are no grid lines so that
another strategy is necessary to perform the sweeps. In Reference [10] it was proposed to
sweep through node numbers from node 1 to N and backwards. Namely, lower nodes
j�L(i ) are surrounding nodes whose number is less than i. The upper nodes j�U(i ) are
surrounding nodes whose number exceeds the current node number i. Here we employs a
grid reordering technique to improve the convergence and the vectorization. Details of this
grid reordering are described in Reference [3].

3. GRID GENERATION

3.1. Surface grid generation

Surface grids of three-dimensional bodies are generated by the direct surface meshing
method [11]. This method applies the advancing front method directly to the body surface
in the physical space. It does not use a mapping so that the mesh size can be automatically
controlled by adapting to the local surface curvature. Also, without mapping, surface defi-
nition for meshing can be more flexible.

3.2. Volume grid generation

The hybrid grids comprised of tetrahedra, prisms and pyramids are generated by the
method described in Reference [12]. The prismatic semi-structured grid is generated around
viscous boundary surfaces and covers viscous regions, while the tetrahedral grid covers
the rest of the computational domain. The Delaunay incremental insertion method
for tetrahedral grid generation is used. The prismatic grid is structured in directions
normal to the boundary faces but the number of prisms generated from one boundary
face is variable from face to face. Unlike conventional prismatic grid generators, this
technique works well even in regions of cavities and gaps. Pyramidal elements appear
between tetrahedral and prisms. This method has shown its robustness for a variety
of geometries without user intervention. Only boundary surface triangulation has to be
specified.
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Figure 2. Cut view of hybrid grid near the tail of ONERA M5 airplane.

Figure 3. Computed pressure contours of ONERA M5.

4. COMPUTED RESULTS

4.1. Transonic 6iscous flow past ONERA M5

Viscous flow around the ONERA M5 configuration was computed by the present method.
The hybrid grid of this geometry contains 367579 nodes, 514291 tetrahedra, 536601 prisms
and 1020 pyramids. A cut view of the grid near the tail of the airplane is shown in Figure 2.
The flow is computed with free-stream conditions of M�=0.84, angle of attack a= −1°,
Re=106. The pressure distribution along the airplane surface using the one-equation turbu-
lence model of Goldberg–Ramakrishnan is shown in Figure 3. Comparison of the computed
pressure coefficients with the experimental result [13] showed good agreement.

The convergence histories of the Navier–Stokes as well as the Euler computations are shown
in Figure 4. The CFL number used for these computations was 105. Converged solutions were
obtained in about 2000 iterations. The convergence for the NS computation stalled as
compared with the Euler computation. This was mainly due to the grid irregularity near the
interface between the prismatic grid and the tetrahedral grid. The implicit part of the method
takes 70% of the time required for explicit flux computations. The method is approximately ten
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times faster compared with the explicit method with local time stepping for the NS computa-
tion. Extra storage required for the implicit method is approximately 5% of the total memory
requirements.

4.2. Transonic 6iscous flow past ONERA M6

The ONERA M6 is a wing model frequently used to validate the Navier–Stokes codes. The
computed result of this configuration is very sensitive to the grid density, so that a very fine
grid was used for the present computation. The hybrid grid of this geometry contains 830476
nodes, 815687 tetrahedra, 1340338 prisms and 7363 pyramids. The minimum spacing of the
prismatic grid normal to the wall is 2×10−5. The flow is computed with free-stream
conditions of M�=0.84, angle of attack a=3.06°, Re=1.46×107. The turbulent boundary
layer was assumed on the entire wing surface and the Goldberg–Ramakrishnan turbulence
model was used.

The computed pressure coefficients for several spanwise locations are shown in Figure 5
together with the inviscid result and the experimental result [14]. The inviscid result was
obtained with the same surface grid but a fully tetrahedral grid. Cut views of the grids and the
computed pressure contours at 65% spanwise location are shown in Figure 6. As shown in
Figures 5 and 6, the computed result with the hybrid grid gives better resolution even with the
same surface grid. The prismatic grid retains the surface grid density to some extent from the
surface. Another important fact is that the use of the prismatic grid in the boundary layer
region significantly saves the total number of grid cells as compared with the fully tetrahedral
grid for the same spatial resolution. If we generate a tetrahedral viscous grid by dividing the
prismatic cells of the present hybrid grid, the total number of cells will become three times as
many as the present grid. Therefore, a hybrid of prismatic and tetrahedral grids has a big
advantage over the fully tetrahedral grid in memory requirement and computational time for
high-Reynolds number viscous flow problems.

Figure 4. Convergence history of ONERA M5 computations.

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 31: 97–111 (1999)



UNSTRUCTURED HYBRID GRID METHOD 105

Figure 5. Comparison of pressure coefficients of ONERA M6 wing.

4.3. Shock/boundary layer interactions between double fines

The accuracy of the present method with turbulence models for a shock/boundary layer
interaction flow field was investigated for a supersonic flow between double fins on a flat plate,
as shown in Figure 7. Flow conditions are M�=2.95 and Re=2.5×105 based on a thickness
of the inflow boundary layer, and the adiabatic wall is assumed. The boundary layer properties
are specified at the inflow boundary position, whose distance is 5d� from the fin leading edge.
The boundary layer properties at the inlet boundary were obtained by solving a flat plate flow
field by the present method beforehand.

The computed density contours at several flow sections using the Goldberg–Ramakrishnan
turbulence model are shown in Figure 8. It is clearly depicted that the shock waves generated
at the sharp edge of the fin interact with the boundary layer on the flat plate. The pressure
distributions on the flat plate are shown in Figure 9, where experimental and computed results
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[15] using the conventional structured grids are also shown for comparison. The present
results, with both the Goldberg–Ramakrishnan and the Spalart–Allmaras turbulence models,
show better agreements with the experimental results.

The number of total grid points is about 200000 and the necessary memory is 34 M words.
The computation is converged after iterating about 3000 times. The computational cost is
about 6 h for 1 CPU on NEC SX4.

Figure 6. Cut views of grids and pressure contours at 65% span location.

Figure 7. Double fin flow field.
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Figure 8. Density contours of double fin flow field.

4.4. Internal flows of SCRAM jet engines

As a practical application, an internal flow of a scramjet (supersonic combustion ram jet)
engine was computed by the present method. The experimental research [16] had been
conducted at the National Aerospace Laboratory of Japan, Kakuda Research Center. The
model engine is schematically shown in Figure 10, and the hybrid grid for this model is shown
in Figure 11. Backward-facing steps are used for fuel injection between inlet and isolator. A
short strut is integrated on the top wall of the throat section to attain intensive combustion.
The flow was computed for a cold flow condition with inflow Mach number of 5.4 and
Reynolds number of 1.515×106. The reference length L is the height of the inlet entrance and
the inflow boundary layer thickness is 0.23L, which was taken from the experiment. The
boundary layer properties were specified at the inflow boundary position and those properties
were obtained by the same way with the previous section. The wall temperature was kept
constant at 300 K. The Goldberg–Ramakrishnan turbulence model was used for the
computation.

The computed pressure contours is shown in Figure 12 and a comparison of the pressure
distributions on the wall with the experiment is shown in Figure 13. Even with the complex
feature of the flow field due to the shock wave/boundary layer interactions, the result shows
good agreement with the experimental data. Figure 14 shows oil flow patterns on the side wall
in the both cases of the experiment and the computation. The computed oil flow depicts the
essential feature of the experimental oil flow.

Although the configuration of the scramjet engine can be treated by zonal structured grid
methods, the singular lines and points appeared in the structured grids often cause a difficulty
in convergence for high Mach number computations. In our experience for both structured
and unstructured grid methods for this configuration, the total CPU time required for the
present hybrid grid computation was much smaller than that of the structured grid method.
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Figure 9. Pressure distributions on the flat plate.

Figure 10. Schematic figure of scramjet.
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Figure 11. Hybrid grid of scramjet inlet.

Figure 12. Pressure contours of scramjet inlet.

5. CONCLUSIONS

Capabilities of the unstructured hybrid grid method have been estimated by its application to
several high Reynolds number viscous flow problems. The method is based on a finite volume,
cell–vertex scheme and LU-SGS implicit method. Computations of transonic flows around
airplane and wing, as well as supersonic flows inside a scramjet engine have validated the
capability of the method in predicting the high-Reynolds number flows accurately and
efficiently. Although the unstructured grid method has an inherent problem of memory
overhead, the solution quality and the computational efficiency for the Navier–Stokes
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Figure 13. Pressure distributions on the wall.

Figure 14. Experimental and computed oil flow patterns on the side wall.

equations became the same level of those by the conventional structured grid method. With the
grid flexibility and the easy refinement capability, the advantage of the unstructured grid
method is apparent for computations of complex three-dimensional configurations.
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